
A
U

TH
O

R
 C

O
P

Y

Journal of Alzheimer’s Disease 85 (2022) 47–53
DOI 10.3233/JAD-215206
IOS Press

47

Hypothesis

The Auditory Afferent Pathway as a
Clinical Marker of Alzheimer’s Disease

Kaneez Fatima Shada,d,∗, Wissam Soubrac,d and Dennis John Cordatob,d

aSchool of Life Sciences, University of Technology Sydney, NSW, Australia
bDepartment of Neurophysiology, Liverpool Hospital, NSW, Australia
cA Healthy Step Clinic, NSW, Australia
dIngham Institute for Applied Medical Research, Liverpool, NSW, Australia

Accepted 6 October 2021
Pre-press 8 November 2021

Abstract. Brain stem neural tracts and nuclei may be disturbed prior to observable neuronal atrophy in AD. In this perspective,
we discuss the notion of functional deficits presenting prior to structural abnormalities in Alzheimer’s disease (AD). Imaging
of inferior colliculi using magnetic resonance spectroscopy (MRS) shows significant decrease in the neuronal markers, N
acetyl aspartate/creatine ratio and increase in the glial marker myo-Inositol, in subjects with Mini-Mental State Examination
scores greater than 24 and with no signs of atrophy in their MRI of the medial temporal lobe. Abnormalities in compo-
nents of the auditory event-related potentials (ERPs) are described in cognitive impairment including AD. We observed
a significant decrease in amplitude and increase in latency during the first 10 ms of auditory evoked potentials measured
on electroencephalography (EEG) indicating slow auditory response of the brainstem. EEG spectral power recorded at the
cortex is also associated with neural activity at the level of the inferior colliculi. We postulate that a functional examination
of auditory afferent pathways, using non-invasive techniques, such as MRS, brain stem auditory evoked potentials (BAEPs)
and ERPs may improve diagnostic accuracy of AD. Functional changes precede structural changes and it is important to
further understand the relationship between biochemical and electrophysiological measures such as MRS, BAEPs and EEG.
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INTRODUCTION

Dementia, in particular Alzheimer’s disease (AD),
poses a substantial economic burden of direct and
indirect costs in Australia which exceeded 14.6 bil-
lion in 2016 and are predicted to rise to 36.85 billion
AUD by 2056 [1]. Globally we are facing a pan-
demic of AD with 9.2 million cases predicted for
the year 2050, such that 1 in 85 people on our planet
will be living with this disease [2]. According to the

∗Correspondence to: Kaneez Fatima Shad, School of Life Sci-
ences, University of Technology Sydney, 15 Broadway, Ultimo,
NSW 2007, Australia. Mailing address: PO Box 123, Broad-
way NSW 2007, Australia. Tel.: +61432064886; E-mails: Kaneez.
FatimaShad@uts.edu.au; ftmshad@gmail.com

World Health Organization (WHO) there are nearly
10 million new cases of dementia every year, with
AD contributing to 60 to 70% of those cases [3].

AD has traditionally been a clinical diagnosis
with standardized memory tests performed contem-
poraneously with an initial clinical assessment. The
diagnosis can be supported by neuropsychological
testing and structural imaging modalities, the latter of
which are performed to exclude alternative diagnoses
as well as characterize regional abnormalities, for
example, by performing cross sectional magnetic res-
onance imaging (MRI) with hippocampal volumetry.
These modalities are limited in their ability to accu-
rately determine the underlying etiology in subjects
presenting with mild cognitive impairment (MCI) [4].
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This may potentially influence the findings of clinical
trials as was found in the solanezumab EXPEDITION
and EXPEDITION2 phase III studies in which 25%
of the study population did not have imaging evi-
dence of amyloid at baseline [5]. Recent modalities,
such as amyloid and tau positron emission tomogra-
phy (PET) and cerebrospinal fluid analysis (CSF) of
amyloid-� (A�) 42/40 ratio and CSF tau [6], are not
readily available for the general community and rela-
tively expensive. Peripheral blood tests that measure
the ratio of the two isoforms of A� are a promis-
ing future alternative to these more complex mea-
sures [7].

More recently, it has been postulated that var-
ious brain stem neural tracts and nuclei may be
disturbed prior to observable neuronal atrophy in
AD [8–10]. It follows that a functional examina-
tion of such pathways, using non-invasive techniques,
such as magnetic resonance spectroscopy (MRS)
[11], brain stem auditory evoked potentials (BAEPs),
and event-related potentials (ERPs) [2] may improve
diagnostic accuracy, particularly if structural abnor-
malities not observable using traditional imaging
modalities, can be detected by observable functional
deficits. A hybridization of MRS, BAEPs, and ERPs
may be of value in identifying patients who are at
risk of cognitive decline. It does not require use of a
radiopharmaceutical compound and is non-invasive
when compared to PET and/or CSF studies.

Hearing in patients with dementia is a focus of
growing clinical interest, with increasing evidence
that hearing loss may predict or accelerate cogni-
tive deterioration [12, 13] and alterations of hearing
may manifest as complex cognitive and behavioral
symptoms relevant to the differential diagnosis of
dementias [14–19]. The proposition that neural tracts
and nuclei reacting before any identifiable atrophy of
the cortex is a rather new hypothesis which is sup-
ported by neuropathological studies of brain sections
of patients with AD [9]. The inferior and superior
colliculi and medial geniculate body have been found
to exhibit senile plaques and neurofibrillary tangles,
respectively, in the brains of patients with AD [9].
Morphological changes in these two regions includ-
ing neuronal loss and synaptic alterations, prior to
the appearance of senile plaques or neurofibrillary
tangles, have also been reported in early cases of AD
[10]. It seems appropriate to investigate the anatom-
ical structure of the brain stem, which has a high
content of neural tracts.

Neuropathological studies in AD have demon-
strated involvement of brain stem nuclei. One of

these nuclei, the Tegmentopontine reticular nucleus,
is affected in early stages during the development
of AD (preclinical AD) before the neuropathologi-
cal changes affect the limbic system (composed of
the thalamus, hypothalamus, hippocampus, and the
amygdala) and cerebral cortex [19]. The solitary tract
and nucleus as well as dorsal nucleus of the vagus
nerve are also affected in the early stages of AD.
Histologically, most of these affected nuclei exhibit
neurofibrillary tangles or senile plaques in the brains
of patients with AD [9].

MAGNETIC RESONANCE
SPECTROSCOPY

Patients with amnestic mild cognitive impairment
(MCI) have a higher risk of progression to AD com-
pared with their cognitively normal peers, and proton
magnetic resonance spectroscopy (1H-MRS) is a
non-invasive biomarker, in such conditions, that can
be diagnostically useful through its ability to measure
numerous metabolites in the human brain [20].

There is evidence of progressive chemical changes
that involve multiple brain regions during the pro-
gression of AD such as decreased neuronal integrity
marker; N acetyl aspartate (NAA); or NAA/creatine
ratio in the parietal and occipital cortex, gray matter,
hippocampus, and posterior cingulate and increased
glial marker myoinositol in the parietal and occipi-
tal cortex, gray matter, and posterior cingulate [21].
Elevated myoinositol/creatine and choline/creatine
ratios and reduced NAA/creatine ratios in MCI and
pre-symptomatic AD suggests that 1H-MRS is valu-
able in predicting future development of dementia
and monitoring early disease progression for preven-
tive therapies [22].

No neuroimaging study has yet dealt with the
anatomical structure of the brain stem nuclei con-
cerning pathological changes caused by AD. We
evaluated the 1H-MRS of inferior colliculus find-
ings in 54 males (27 healthy controls, 27 patients
with MCI; aged 50–70 years). All patients underwent
neuropsychological testing using Mini-Mental State
Examination (MMSE) [23] and Clinical Dementia
Rating (CDR) [24]. 1H-MRS of the inferior colliculus
was performed by the Point Resolved Spectroscopy
(PRESS) system for sequencing, using both multi and
single voxel with different voxel sizes (from 7–15) to
obtain reproducible results with minimum noise. The
study confirmed the feasibility of using 1H-MRS in
MCI for tracking neuronal changes in the brain stem
(Figs. 1 and 2).
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THE ASCENDING AUDITORY PATHWAY

Alteration of hearing may predict future onset of
dementia such as AD. A relevant starting point in
the examination of auditory neural tract disturbances
would be the primary afferent pathways, more specif-
ically the associated brain stem and midbrain nuclei
as cortex activity is informed and governed by these
structures including cochlear nuclei, inferior colli-
culi, and the medial geniculate nuclei.

We have selected to focus on the auditory pathway
as it is the most external of the sensory pathways and it
is also generally one of the last sensory pathways to be
clinically detected as being disturbed in AD. It could
be inferred that if damage is found in the auditory
pathway, that other brain stem pathways, for example

Fig. 1. The 1H-MRS imaging plane used for the inferior colliculus.

the nucleus tractus solitarius [25] and locus coeruleus
[26], may already be damaged more severely.

Processing of sound begins in the ascending audi-
tory pathway extending from the cochlea to the
primary auditory cortex in Heschl’s gyrus (transverse
temporal gyrus) and involves complex signal process-
ing at each of the different levels of the pathway
[27]. A meta-analysis concluded that hearing loss
impacts on multiple domains of cognition and that
there is a correlation between cognition and hear-
ing impairment [28] that is not simply attributable
to hearing loss confounding speech-based cognitive
tasks [29] and has been observed in those with and
without dementia [30]. Histopathological involve-
ment of auditory cortices has been described in major
neurodegenerative dementias [31] and deficits of
auditory cognition are early features of these diseases.
Limited histopathological data is available for the role
of auditory system in common dementias, indicating
that the major auditory relay nuclei are involved in the
pathology of AD [9, 31] and abnormalities of auditory
cortical evoked potentials precede the clinical symp-
toms in young carriers of pathogenic AD mutations
[32]. Relatively few studies, on the role of hearing in
dementia, have addressed cortical auditory process-
ing specifically, perhaps due to the wide variation in
the reported frequency of hearing impairment in AD
[13].

Patients with dementia may have reduced per-
ception of sound, disproportionate to any damage

Fig. 2. A normal MRI image from a mild congitive impairment patient, and a 1H-MRS image from the same patient showing abnormal
biochemical changes.
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Fig. 3. This figure shows voltage changes to auditory stimuli captured during an electroencephalography (EEG) recording. Auditory brain
stem response (ABR) of less than 10 ms, followed by the auditory middle latency response (AMLR) of less than 100 ms and event related
potentials (ERPs) of up to 1000 ms.

involving the cochlea or the ascending auditory
pathways, which may manifest as cortical deafness
syndrome [33] with peri-Sylvian degeneration [34].
Patients with clinically typical AD commonly report
difficulty following conversations and other sounds
against background noise which may contribute to
avoidance of social situations and a general dislike
of busy auditory environments [35]. Such symptoms
are attributed to a nonspecific memory or attentional
deficit that may signify AD-associated impairments
of auditory scene with disintegration of a parieto-
temporal network [14, 17, 18] in an unfamiliar accent
[16]. A neuroanatomical substrate may be present in
the posterior peri-Sylvian cortices [35].

It may be of value to measure BAEPs not only for
auditory dysfunction in general but also for patients
with MCI or suspected diagnosis of AD. Previous
literature suggests that central auditory dysfunction
may precede the onset of clinical dementia [36].
There is also growing evidence of vestibular loss
as a contributing factor to the development of MCI
and AD.

EVENT-RELATED POTENTIALS AND
QUANTITATIVE EEG

ERPs comprise of voltage changes to sensory stim-
uli, for example auditory (Fig. 3), captured during an

electroencephalogram (EEG) [37]. The sequence of
7 auditory evoked potentials (Fig. 3), as described by
Starr and Achor [38], are directly related to neural
activity within the inferior colliculi [39]. The infe-
rior colliculi provide input to the medial geniculate
nucleus of the thalamus which subsequently relay to
the cortex for processing, directly influencing cor-
tex activity more broadly. Abnormalities in interpeak
latency and/or amplitude ratios of the BAEP may
be present in patients with MCI. It is also plausi-
ble that EEG spectral power recorded at the cortex
is associated with neural activity at the level of the
inferior colliculi. Abnormalities in components of
the auditory ERPs have been recently described in
aging, depression, and cognitive impairment includ-
ing AD [40]. There may also be a role for evaluating
other pathways including visual ERPs and vestibular
evoked myogenic potentials in MCI and AD [41].

The P300 component of an auditory ERP is a
positive deflection occurring 300 ms and the N400
component is a negative component peaking at
400 ms following a stimulus [42]. Research has
demonstrated that EEG spectral power within the
delta, theta, alpha, and beta frequency bands of pre-
and post-auditory stimulus EEG is associated with
both the amplitude and latency of various auditory
ERP components [42]. The P300 amplitude has been
shown to be reduced across the whole head and its
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distribution is altered in patients with AD with max-
imums found at frontal sites as opposed to parietal
sites in healthy controls [43]. The P300 latency has
also been shown to be increased in patients with AD
[44] whereas the N400 component is diminished [45].
The P400 amplitude has also been shown to be signifi-
cantly higher in the posterior head regions in patients
with AD who are performing a memory workload
task [46]. Mismatch negativity has been found to have
a decreased amplitude in AD [47].

Research indicates that both broad and event spe-
cific brain activity changes may precede and possibly
predict early cognitive decline [2]. Changes in beta
and gamma activities are generally linked to cogni-
tive decline [48]. Domain specific cognitive decline
may also influence other EEG activities across all
frequency bands. An increase in delta and theta fre-
quency band activity on quantitative EEG is well
recognized as a manifestation of cognitive impair-
ment [49]. Changes in higher frequency EEG activity
including decreased upper alpha band activity [50]
and alpha reactivity [51] have also been correlated
to changes in cognitive performance. Alterations in
gamma oscillatory synchrony [52] and in beta [2]
and gamma activity including increased theta/gamma
ratios [53] have also been implicated.

FUTURE DIRECTIONS, SUGGESTIONS,
AND CONCLUSIONS

Despite the plausible relationship between 1H-
MRS based investigations of neural degeneration
with similarly based BAEP and ERP quantitative
electroencephalography research, future confirma-
tory studies that directly compare and/or hybridize
these measures are required. Such research could
lead to the future development of a unique hybrid
algorithm that could function as a novel non-invasive
biomarker of early cognitive decline and which may
be further utilized to identify individuals at risk of
dementia, in particular AD.
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